Palladium(0) – An Underexplored **Route to Efficient Phosphorescence**

Adam F. Henwood^a, Mathieu Lesieur^a, Ashu K. Bansal^b, Vincent Lemeur^c, David Beljonne^c, David G. Thompson^d, Duncan Graham^d, Alexandra M. Z. Slawin^a, Ifor D. W. Samuel^b, Catherine S. J. Cazin^a and Eli Zysman-Colman^{a*} ^aOrganic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST, eli.zysman-colman@st-andrews.ac.uk, http://www.zysman-colman.com ^bSUPA School of Physics and Astronomy, University of St. Andrews ^cChimie des Matériaux Nouveauz & Centre d'Innovation et de Recherche en Matériaux Polymères, Université de Mons

^dWestCHEM Department of Pure and Applied Chemistry and Centre for Molecular Nanometrology, University of Strathclyde

Introduction

Phosphorescent iridium(III) complexes are unparalleled in their performance as phosphors for OLEDs.¹ However, the scarcity of iridium necessitates exploring alternative, potentially more abundant materials that may serve as suitable candidates to replace iridium as the premier class of emitter for these applications.

The most common alternatives to iridium(III) are platinum(II) and copper(I) complexes, but they too have drawbacks in terms of scarcity (platinum) or stability (copper).² Thus in this work, we assess the viability of employing the underexplored family of palladium(0) complexes as phosphors for OLED applications. Palladium is more abundant than both iridium and platinum, and the family of complexes reported herein demonstrates exceptionally bright luminescence and good colour tunability from blue-green to orange. The first OLEDs using Pd(0) based emitters have been fabricated from these materials and their properties have been investigated.

¹K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. W. Lee, J. Huh, Y. You and J.-J. Kim, *Nat. Commun.*, 2014, 5, 4769 ² N. Armaroli, G. Accorsi, F. Cardinali and A. Listorti, *Top. Curr. Chem.*, 2007, 280, 69.

Solution State Emission Spectroscopy

Complex	λ _{em} / nm	Φ_{PL} / %	τ _e / μs
1	512	1	0.014
2	508	16	1.56
3	543	69	5.46
4	515	14	0.36 (15 %), 1.59 (85%)
5	555	70	2.93
6	608	70	5.62

EaStCH

Background and Context

- Luminescent Pd(II) complexes are more heavily explored, but these are usually poorly luminescent due to low lying metal centred (MC) states.
- Pd(0) complexes only have accessible metal-to-ligand charge transfer (MLCT) states, and thus in principle should be highly emissive.
- However, until now reports on luminescent Pd(0) complexes have been sparse.³⁻⁶

2005, 690, 6051

Complex	E _{1/2} (V)	E _{1/2} (V)	E _{HOMO} (eV)	E _{LUMO} (eV)
	[∆ <i>E</i> _p (mV)]	[∆ <i>E</i> _p (mV)]		
2	-0.17 [114]	0.10 [119]	-4.07	-1.39
3	-0.29 [119]	0.00 [115]	-3.95	-1.38
5	-0.39 [149]	-	-3.85	-1.46
6	-0.45 [236]	-	-3.79	-1.53

Cyclic voltammetry of complexes 2, 3, 5 and 6 in THF solution vs SCE using Fc/Fc⁺ as an internal standard (0.56 V in THF).⁷

⁷ N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, **96**, 877

Solid State Photophysics

IPr	IPr	SIPr	IPr*	IPr I	SIPr
Pd	Pd	Pd	Pd	Pd	Pd
PPh ₃	PCy ₃	PCy ₃	PCy ₃	IPr	SIPr

Φ_{PL} = 1%	J. Am. Chem. Soc.,	2013, 35 , 110
J. Am. Chem. Soc.,	1988, 110 , 2145	
1985, 107 , 6718		

Target Complexes

[Pd(IPr)₂], 5

[Pd(IPr*)(PCy₃)], 4

UV-Vis Absorption Spectroscopy

All complexes exhibit MLCT-type HOMO-LUMO transitions.

• For 1, this is to the PPh₃, which probably leads to significant quenching and thus poor luminescence observed.

All other complexes exhibit transitions that are metal-to-NHC in nature, and highly luminescent.

UV-Vis absorption spectra in degassed toluene solution of complexes 1 - 6

Conclusions

Six di-coordinated neutral Pd(0) complexes bearing a combination of NHC and/or PR₃ ligands have had their full solution state photophysics characterised. Complex 1, with a metal-to-phosphine ³MLCT excited state, is poorly luminescent. By contrast, the other complexes are characterised by a metal-to-NHC ³MLCT excited state that leads to intense luminescence observed in solution, with complexes 3, 5 and 6 demonstrating record Φ_{Pl} values for any palladium complex reported to date. Bright luminescence coupled with a large range of accessible emission wavelengths are important criteria in considering new materials for device applications, and these materials successfully achieve both of these, with scope for further structural improvements that suggests even brighter emission at the extremities of the visible spectrum is readily achievable. As a proof of concept, the first OLEDs adopting Pd(0) emitters were successfully fabricated using complexes 5 and 6, with initial studies achieving EQEs of 0.28 and 0.70 %, respectively. Further optimisation in charge balance behaviour should lead to improved device performances.⁸

⁸A. F. Henwood, M. Lesieur, A. K. Bansal, V. Lemaur, D. Beljonne, D. G. Thompson, D. Graham, A. M. Z. Slawin, I. D. W. Samuel^{*}, C. S. J. Cazin^{*} and E. Zysman-Colman^{*}, Chem. Sci., 2015, 6, 3248

ACKNOWLEDGEMENTS AND FUNDING

[Pd(SIPr)₂], 6

