Impact of the Use of Sterically Congested C^N Ligands on the Photoluminescent Properties of Iridium(III) Complexes

Claus Hierlinger,1,2 Eli Zysman-Colman*,1 Véronique Guerchais2
1 Organic Semiconductor Centre, EaSIChEM School of Chemistry North Haugh, University of St Andrews, St Andrews, Fife, UK KY16 9ST
2 UMR 6226 CNRS - University of Rennes I, Institut des Sciences Chimiques de Rennes, Campus Beaulieu, Rennes. France
ch254@st-andrews.ac.uk, claue.hierlinger@univ-rennes1.fr, http://www.zysman-colman.com

INTRODUCTION

Since the invention of artificial light, the quality, the performance and the energy efficiency of luminaires have been steadily improving, with organic light emitting diodes (OLEDs) emerging as one of the state-of-the-art artificial lighting technologies. However, OLEDs suffer from issues such as high production costs and small active surface areas. Another promising artificial lighting technology is the light emitting electrochemical cell (LEEC), with an emissive layer based on luminescent cationic iridium complexes. This device possesses a simpler architecture, which can lower significantly the production costs. Exited state self-quenching during the operation can limit the lifetime of the device. A strategy to circumvent this issue is to control the inter-nuclear distance by decorating the complexes with bulky, hydrophobic substituents.

OBJECTIVES

Design a family of cationic Iridium(III) complexes by modulating the size of substituents R₁ and R₂ on the C^N ligands. These groups will:
- hinder disadvantageous attack by small molecules in the film
- increase inter-nuclear distances
- impede excited state self-quenching

→ Leading to enhanced performance of the LEECs

LIGAND SYNTHESIS

Preliminary photophysical data

CONCLUSIONS

- Successful synthesis in good yields of a new family of cationic Ir(III) complexes.
- Preliminary results of photophysical studies show red shift in emission by adding more bulky, electron donating tert-butyl substituents on C^N ligand.

PERSPECTIVES

- Completion of the investigation of these sterically congested Ir(III) complexes in solution and thin films in order to ascertain how \(\Phi_{\text{PL}} \) and \(\tau_e \) are impacted.
- Preparation of LEECs with synthesized complexes as the emissive layer.