Impact of the Use of Sterically Congested C^N Ligands on the Photoluminescent Properties of Iridium(III) Complexes sciences Chimiques

UMR CNRS de Rennes

U EaStCHE

<u>Claus Hierlinger</u>,^{1,2} Eli Zysman-Colman^{*},¹ Véronique Guerchais^{*2}

¹ Organic Semiconductor Centre, EaStCHEM School of Chemistry North Haugh, University of St Andrews, St Andrews, Fife, UK KY16 9ST ² UMR 6226 CNRS - University of Rennes I, Institut des Sciences Chimiques de Rennes, Campus Beaulieu, Rennes. France ch254@st-andrews.ac.uk, claus.hierlinger@univ-rennes1.fr, http://www.zysman-colman.com

Introduction

A promising artificial lighting technology is the light emitting electrochemical cell (LEEC), with an emissive layer based on luminescent cationic iridium complexes. This device possesses a simpler architecture compared to organic light emitting diodes (OLEDs), which can lower significantly the production costs. Excited state selfquenching during the operation can limit the lifetime of the device. A strategy to circumvent this issue is to control the inter-nuclear distance by decorating the complexes with bulky, hydrophobic substituents.

Family of sterically congested cationic Ir(III) complexes

Objectives

Design and synthesise a family of cationic Ir(III) complexes by modulating the size of substituents R_1 and R_2 on the C^N ligands.

These groups will:

- hinder disadvantageous attack by small molecules
- increase inter-nuclear distances
- impede excited state self-quenching
- \rightarrow Leading to enhanced performance of the LEECs

Recorded in deaerated ACN with 0.1M (n-Bu₄N)PF₆ at 298 K

• quasi-reversible oxidation \rightarrow Ir(III) to Ir(IV) • quasi-reversible reduction $\rightarrow \pi^*$ orbitals of the N^N ligand longer inter-nuclear distance by increasing the size of the C^N ligand

Luminescence Properties

• intense high-energy π - π * transition

low-energy MLCT/LL'CT transition bands,

insensitive to the nature of the C^N ligand

c) Photophysical Data

	deaerated MeCN solution			Neat film		
	λ _{em} [nm] ^[a]	т [ns] ^[a]	Ф _{РL} [%] ^[a,b]	λ _{em} [nm] ^[c]	т [ns] ^[c] with contributions	Ф _{РL} [%] ^[d]
Ir-1a	592	581	21	578	180 (57.7 %)	23
Ir-2a	597	497	17	579	200 (53.1 %)	40
lr-2b	611	250	8	565	225 (68.9 %)	27
Ir-3a	592	643	19	565	171 (46.1 %)	15
lr-3c	588	575	22	559	156 (38.3 %)	14
Ir-4a	588	623	19	564	179 (50.1 %)	16
Ir-5a	598	501	17	570	183 (51.9 %)	40

500 550 Normalised emission spectra, recorded in deaerated MeCN at 298 K,

with $\lambda_{exc} = 400 \text{ nm}$

- yellow phosphorescence in solution state and neat films • blue-shift of 30 nm going from solution to solid-state
- Iuminescence lifetime: 500 ns in solution
- luminescence quantum yield : in solution $\sim 20\%$; in solid up to 40%

Ir-1a Ir-2a Ir-2b Ir-3a Ir-3c Ir-4a Ir-5a

Acknowledgment and Funding

600 YEARS University of St Andrews 1413 – 2013

550 Normalised emission spectra of neat film obtained from dropcast neat film, with $\lambda_{exc} = 400 \text{ nm}$

Conclusion

- Straightforward synthesis of new family of sterically congested cationic Ir(III) complexes
- Increased inter-nuclear distance
- \rightarrow reduction of concentration quenching
- Yellow phosphorescence
- Good quantum yields in solid-state

[a] recorded at 298 K in deaerated MeCN, with λ_{exc} = 400 nm, [b] 10⁻⁵⁻ M Tris(2,2'bipyridine)ruthenium(II) chloride hexahydrate in H₂O was used as reference [c] values refer to dropcast thin films at 298 K, with λ_{exc} = 400 nm, only long life component is displayed [d] values refer to dropcast thin films at 298 K using an integration sphere in deaerated environment

 \rightarrow Promising candidates for LEECs

 \rightarrow Preparation of devices in progress, in collaboration with Dr. Henk Bolink, Valencia/Spain

